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We establish a Green-Nagdhi model equation for capillary-gravity waves ins2+1d dimensions. Through the
derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses
s1+1d traveling-wave solutions for almost all the values of the Bond numberu sthe special caseu=1/3 is not
studiedd. These waves become singular when their amplitude is larger than a threshold value, related to the
velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied
via a Benjamin-Feir modulational analysis.
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I. INTRODUCTION

The propagation of surface waves in an ideal incompress-
ible fluid is a classical and still open subject of investigation
in fluid mechanics. One possible approach to tackle this
problem is to elaborate approximate theories from hypoth-
eses on the nature of the waves. Thus, the shallow water
approximation has produced a lot of interesting and useful
nonlinear evolution model equations for small-amplitude
long surface waves. These models can be classified in two
main categories: extreme long-wave models like the
Korteweg–de VriessKdVd or the modified KdV smKdVd
equationsf1,2g, and intermediatelong-wave models like the
various versions of the Boussinesq or modified Boussinesq
equationsf3g, the Benjamin-Bona-Mahony-Peregrine equa-
tion f4,5g, the Green-Nagdhi systemf6–8g, and many others.
Roughly speaking, extreme models may be derived from in-
termediate ones since the latter allow an asymptotic limit
leading to the ubiquitous KdV or mKdVf9,10g. With regard
to long-wave dynamics, intermediate models are therefore
more precise concerning dispersion and nonlinearities, and
accordingly are more representative of Euler systems than
extreme ones. However, this richer description of the waves
has a counterpart for it may incorporate also short-wave
propagation in the models. It is due to the methods leading
from the Euler system to the intermediate models which are
not able to filter out completely short waves. This is the case,
for example, of some of the Boussinesq-type equations and
the Benjamin-Bona-Mahony-Peregrine equationf10,11g.

The presence of short scales in a long-scale model may
constitute a major drawback, especially during its numerical
study. Since in that case the final dynamics are a nonlinear
superposition of short and long scales, the short waves if
unstable can contaminate the whole model. For this reason,
nonlinear propagation of short waves in long-wave models
has been previously studied in Refs.f12–15g. Linear theoret-
ical estimates on the behaviors of short waves were carried
out, based on the linear dispersion relations of the models
and thus confirmed by numerical tests performed on the non-
linear models. A nonlinear analytical and numerical analysis
of this question for the Benjamin-Bona-Mahony-Peregrine
equation was conducted in Ref.f11g. However, we should

not reduce such dynamics to a subsidiary phenomenon, since
their study is a way to understand the ultraviolet regime in
surface water wave.

The purpose of this paper is to investigate theoretically
and numerically nonlinear short-wave behavior in a Green-
Nagdhi model with surface tension. Although the model is
derived in a limit where large scales dominate, the existence
of short waves related to the short scale nature of the capil-
lary phenomena cannot be ignored. The study is carried out
in s2+1d dimensions. In the long-wave limit, the model leads
to the Kadomtsev-PetviaskvilisKPd equation. Here, we have
only considered short waves since, at present, we lack the
tools needed to take into account both scales together. This is
an important open problem and some progress was made in
Refs.f16,17g.

The paper is organized as follow. In Sec. II, we derive a
Green-Nagdhi system ins2+1d dimensions, with surface ten-
sion. The analysis of the associated linear dispersion relation
shows that the model can propagate short waves. To tackle
the problem of nonlinear short surface waves, a multiple
scale perturbative method is carried out in Sec. III and leads
to an asymptotic model equation. The analytical study of its
s1+1d traveling-wave solutions is then undertaken in Sec. IV
and, finally, we perform in Sec. V the Benjamin-Feir analysis
of the Stokes wave. The last section is devoted to some final
remarks.

II. THE „2+1… GREEN-NAGDHI MODEL EQUATION
WITH SURFACE TENSION

Let us consider a fluid layer, initially at rest, in a uniform
gravitational field and endow the space with a Cartesian
frame sO,x,y,zd so thatsOzd is the upward vertical direc-
tion. The fluid domain is contained between a rigid bottom at
z=0 and a upper free surface atz=Ssx,y,td. We assume that
the fluid is ideal, i.e., inviscid, incompressible, and that its
density, s, is uniform and constant. Its surface tension is
denoted byT and the velocity field byv=su,v ,wd, where
each component depends onx, y, z, andt. The motion of the
fluid in the bulk is then given by the Euler equations. For
0,z,Ssx,y,td, we have
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ux + vy + wz = 0, s1ad

ut + uux + vuy + wuz = − px
* /s, s1bd

vt + uvx + vvy + wvz = − py
* /s, s1cd

wt + uwx + vwy + wwz = − pz
* /s − g, s1dd

wherep* is the pressure field in the fluid andg stands for the
gravitational acceleration. In the equations above and
throughout this paper, the subscripts refer to the partial de-
rivatives. These equations in the flow domain must be com-
pleted by kinematic and dynamic boundary conditions at the
bottom and at the upper free surface. We have

w = 0 atz= 0, s2ad

St + uSx + vSy − w = 0 atz= Ssx,y,td, s2bd

p * = p0 − T
Sxxs1 + Sy

2d + Syys1 + Sx
2d − 2SxySxSy

s1 + Sx
2 + Sy

2d3/2

at z= Ssx,y,td. s2cd

Equation s2cd is the Laplace-Young boundary condition
which rules the pressure difference between the two sides of
the interface. We assume in Eq.s2cd that the pressure in the
upper fluidstypically aird remains uniform and equal top0.

Shallow water equations are usually derived by perform-
ing an asymptotic analysis directly on the Euler equationss1d
and boundary conditionss2d. The velocity and the pressure
fields are then handled perturbatively through the use of
asymptotic expansions. Our approach is somewhat different
since, instead of studying the entire problem via a perturba-
tion theory, we are going to consider first the nonlinear evo-
lution of a given initial ansatz for the velocity field. We as-
sume indeed thatu andv are independent ofz, that is,

u = usx,y,td, s3d

v = vsx,y,td. s4d

This ab initio given velocity profile, known as thecolumnar-
flow ansatz, can be justified from linear theoretical arguments
or, even better, from direct visualization of the particle tra-
jectories of a plane periodic wave in water of fairly depth
f18g. It was introduced long ago by Green and Nagdhif6–8g,
not in this form but in the rather different framework of the
Cosserat surface theoryssee references quoted inf7,8gd. Be-
sides, these profiles are also obtained through the classical
shallow water analysis.

The columnar-flow ansatz enables us to derive equations
involving only three fields, namelyu, v, andS, and to elimi-
nate thez dependence. From Eqs.s1ad and s2ad, we have

wsx,y,z,td = zqsx,y,td, s5d

where

qsx,y,td = − uxsx,y,td − vysx,y,td. s6d

Equationss1bd and s1cd can then be integrated fromz=0 to
z=S and, using Leibnitz’s rule, we obtain

su̇S= − px − T
aSx

b3/2, s7d

sv̇S= − py − T
aSy

b3/2, s8d

where the dot stands for the material derivative, i.e.,

u̇ = ut + uux + vuy, s9d

and the functionsp, a, andb are defined by

psx,y,td =E
0

S

p * dz− p0S, s10d

asx,y,td = Sxxs1 + Sy
2d + Syys1 + Sx

2d − 2SxySxSy, s11d

bsx,y,td = 1 +Sx
2 + Sy

2. s12d

Next, we multiply Eq.s1dd by z and integrate it fromz=0 to
z=S, which yields

s
S3

3
sq̇ + q2d + sg

S2

2
= p + T

aS

b3/2. s13d

The pressurep may then be eliminated from Eqs.s7d, s8d,
and s13d, leading to

u̇ = − SSxsq̇ + q2d −
S2

3
sq̇ + q2dx − gSx +

T

s
S a

b3/2D
x
,

s14ad

v̇ = − SSysq̇ + q2d −
S2

3
sq̇ + q2dy − gSy +

T

s
S a

b3/2D
y
,

s14bd

Ṡ= Sq, s14cd

and, substitutingq by its expressionfEq. s6dg, we eventually
obtain the equations involving the initial fields,

Ssut + uux + vuyd =
1

3
fS3suxt + uuxx − ux

2 + vyt + vvyy − vy
2

+ vuxy + uvxy − 2uxvydgx − gSSx

+
TS

s
S a

b3/2D
x
, s15ad

Ssvt + uvx + vvyd =
1

3
fS3suxt + uuxx − ux

2 + vyt + vvyy − vy
2

+ vuxy + uvxy − 2uxvydgy − gSSy

+
TS

s
S a

b3/2D
y
, s15bd

St + suSdx + svSdy = 0. s15cd

These equations constitute a Green-Nagdhi system, with sur-
face tension, ins2+1d dimensions.
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The linear dispersion relationvsk, ld of the systems15d is
derived by expandingu, v, and S into the following form
se,1d:

u = eU + Ose2d, s16ad

v = eL + Ose2d, s16bd

S= h + eW+ Ose2d, s16cd

whereh is the unperturbed depth. At the ordere, we obtain

Ut =
1

3
h2sUxtx + Lytxd − gWx +

T

s
sWxxx+ Wyyxd, s17ad

Lt =
1

3
h2sUxty + Lytyd − gWy +

T

s
sWxxy+ Wyyyd, s17bd

Wt = − hsUx + Lyd. s17cd

To look for the possible solutions of the preceding linear
system, we setU=aeif , L=beif, andW=geif, where

f = kx+ ly − vsk,ldt, s18d

k and l are the wave numbers in thex and y directions,
respectively, anda , b, and g are arbitrary constants. From
Eq. s17d, a , b, and g obey a linear homogeneous system
which has nontrivial solutions if

vsk,ld2 = sl2 + k2d
gh+

Th

s
sl2 + k2d

1 +
h2

3
sl2 + k2d

. s19d

The Euler equationss1d and s2d have the dispersion relation

V2 = sk2 + l2d1/2Sg +
Tsk2 + l2d

s
Dtanhfsk2 + l2d1/2hg.

s20d

We can compare the phase velocityC and the group velocity
Cg associated with Eq.s20d with the analogousc and cg
associated with Eq.s19d. This is done in Fig. 1 and Fig. 2 for
Vskd andvskdsl =0d. The pictures show that the linear model
s15ad, s15bd, and s15cd approximates the linear Euler equa-
tions very well for 1,kh,2. For kh.2, the divergence
increases.

III. ASYMPTOTIC MODEL FOR SHORT
CAPILLARY-GRAVITY WAVES

The systems15d can be seen as a first reduction of the
Euler equations via the columnar-flow hypothesis. It incor-
porates finite dispersion not only in the long-wave limit but
also in the short-wave one since the surface tension has been
included in the model. Indeed, the dispersion relation is well
behaved whetherÎk2+ l2→0 slong wavesd or Îk2+ l2→`
sshort wavesd. The long-wave case leads to the KP equation.
To examine more precisely the short-scale behavior, we are

going to look for wavesshort in x andnormal in y, that is, to
consider they dimension as being a lateral weak perturbation
with respect to thex one.

Two new variables are required to appropriately take into
account short waves asymptotically in time: a spatial vari-
able, z, describing a local pattern and a temporal one,t,
matching large times. To be compatible with the plane pro-
gressive wave solution of angular frequencys19d, we intro-
duce a small parametere and take

k =
k0

e
and l = l0, s21d

wheree,1 andk0 andl0 are of order 1. The expansion ofv
in terms ofe reads

v = k0Î3T

sh
F1

e
+ eS gs

2Tk0
2 +

l0
2

2k0
2 −

3

2h2k0
2D + Ose3dG .

s22d

It leads to

FIG. 1. Representation of the phase velocityCskd of Eq. s20d
sbroken lined and phase velocitycskd of Eq. s19d scontinuous lined
as a function ofkh.

FIG. 2. Representation of the group velocityCgskd of Eq. s20d
sbroken lined and group velocitycgskd of Eq. s19d scontinuous lined
as a function ofkh.
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z =
1

e
sx − Vtd, y = y, t = et, s23d

whereV=Î3T/sh; the associated operators are given by

]

]x
=

1

e

]

]z
,

]

]y
=

]

]y
,

]

]t
= −

V

e

]

]z
+ e

]

]t
. s24d

Now, using expressionss24d in Eqs. s15d, together with the
expansions

u = e2sU0 + e2U2 + ¯ d, s25ad

v = esL0 + e2L2 + ¯ d, s25bd

S= h + e2sW0 + e2W2 + ¯ d, s25cd

we can isolate nonlinear dynamics of short capillary-gravity
waves from the systems15d by performing a perturbative
calculation according toe.

Equationss15ad in order 1/e, Eq. s15bd in order e0, and
Eq. s15cd in ordere yield the following system:

VsU0,z + L0,yd =
3T

sh2W0,z, s26ad

VL0 =
1

3
Vh2sU0,zy + L0,yyd −

T

s
W0,zy, s26bd

VW0,z = hsU0,z + L0,yd, s26cd

whose solution is

U0 =
V

h
W0, L0 = 0 with V2 =

3T

sh
. s27d

Next, the orderse of Eq. s15ad ande3 of Eq. s15cd lead to an
evolution equation forU0 in z , y, andt coordinates. Rewrit-
ten with the initial variables, it reads

uxt =
3g

2Vh
s1 − 3udu −

1

2
uxxu −

1

4
ux

2 +
3h2

4V
uxxux

2 −
V

2
uyy,

s28d

whereusx,y,td is the fluid velocity at the surface andu is a
dimensionless parameter, the Bond number, given by

u =
T

sh2g
. s29d

Equation s28d governs the nonlinear propagation of short
waves in the long-wave models15d.

IV. ANALYSIS OF THE „1+1… TRAVELING-WAVE
SOLUTIONS

As a first investigation in the study of Eq.s28d, one may
begin by looking for its possible traveling-wave solutions.
Owing to the difference between the space scales in each
direction, we will only consider plane waves propagating in
the short-scale one, i.e., we eliminate they dependence from
Eq. s28d by removing theuyy term,

uxt =
3g

2Vh
s1 − 3udu −

1

2
uxxu −

1

4
ux

2 +
3h2

4V
uxxux

2. s30d

We then introduce the following dimensionless variables:

u8 =
l

3

u

V
, x8 =

l

3

x

h
, t8 =

V

2h
t, s31d

wherel is a nonzero dimensionless parameter defined by

l =
3s1 − 3ud

u
. s32d

They lead, ifuÞ1/3, to the more convenient form of Eq.
s30d sdropping the primesd,

uxt = u − uxxu −
1

2
ux

2 +
l

2
uxxux

2. s33d

If u=1/3, Eq.s30d is dispersionless and will not be studied
here ssee f19,20g for a detailed analysis of the long-wave
dynamics for this special value ofud. A traveling wave may
be described by a function

usrd = usx − ctd, s34d

wherec denotes the velocity of the wave. In the following,
we only consider waves moving to the right, i.e., we assume
c.0. According to Eq.s33d, the wave profileusrd must then
obey the ordinary differential equation

Sl

2
ur

2 − u + cDurr = − u +
1

2
ur

2. s35d

For lÞ0, the study of Eq.s35d may be carried out by
using the following change of variables:

X =
l

2
ur

2 − u + c, s36ad

Y = u. s36bd

If lÞ1, it leads to the first-order differential system

XXr = s1 − ldSY +
c

l − 1
DYr , s37ad

Yr
2 =

2

l
sX + Y − cd, s37bd

which is equivalent to Eq.s35d provided one excludes from
Eqs. s37d the solutionsYr =0 with YÞ0. The phase portrait
of the systems37d is then easily obtained since Eq.s37ad can
be integrated, giving

X2 + sl − 1dSY +
c

l − 1
D2

= lk, s37a8d

wherek is determined by the initial conditions. Forl=1, Eq.
s37bd is still valid, but Eq.s37a8d now becomesX2+2cY=k.

In the following, we restrict the study of Eq.s35d to the
solutionsu for which there existsr0 such thatursr0d=0 sthe
solutionu=0 is left asided. We also defineu0=usr0d and then
have from Eq.s37a8d k=u0

2+c2/ sl−1d if lÞ1 and k=u0
2
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+c2 if l=1. We found two main cases whenl.0. If uu0u
,c, the solutions are periodic and defined for allr sFigs. 3
and 4d. Otherwise, they show a singularity for a finite value
of r. In the more specific case 0,l,1, the situation is
actually a little more involved since the above singularity
disappears whenuu0u.c/Î1−l.c: the solution is then de-
fined for all r but is not periodicsi.e., not boundedd. When
l,0, the solutions found are periodic again, similar to the
previous ones, ifuu0u,c/Î1−l sFig. 5d. They show a singu-
larity if u0,−c/Î1−l or c/Î1−l,u0,c and are not
bounded ifu0.c. The value of the functionu at the singu-
larity point ssee Figs. 3, 4, and 5 for further detailsd is given
by

uS
± =

c

1 − l
±

1

ul − 1u
Îlfsl − 1du0

2 + c2g s38d

if lÞ1 anduS=su0
2+c2d / s2cd if l=1.

The preceding analysis shows that Eq.s33d has traveling-
wave solutions for all values oflslÞ0d. These waves share
the same feature: they only exist if their amplitudeuu0u is
small enough. The threshold valueuC depends on the sign of
l :uCsld=c if l.0 anduCsld=c/Î1−l if l,0. BelowuC,
the wave is periodic and smooth, whereas as the amplitude
reaches the threshold value, a singularity appears in the top

part of the wave. Beyond the threshold, a solution smooth,
bounded, and defined for allr no longer exists. However,
from the existing solutions of Eq.s35d, one may build a
periodic piecewise function which may be seen as the evo-
lution of the periodic wave after it ceases to exist with a
smooth shape, and whose only singularities are located at the
crests, periodically distributed on ther axis sFig. 6d. Actu-
ally, from a physical point of view such construction is rel-
evant only whenu0,0. According to Eq.s38d, the height of
the crest is given by, iflÞ1,

FIG. 3. Schematic representation of the traveling-wave solutions
for lù1. uS

± is defined for all values ofu0 and is such thatuuS
±u

ù uu0u.

FIG. 4. Schematic representation of the traveling-wave solutions
for 0,l,1. uS

± is defined only whenuu0uøc/Î1−l; in that case,
uS

−ù uu0u.
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uSsu0,ld =
c

1 − l
+

1

l − 1
Îlfsl − 1du0

2 + c2g, s39d

provided it is defined, anduSsu0,1d=su0
2+c2d / s2cd. It may be

worth noting that ifl,0, the lower part of the resulting
wave is more extensive than the upper onefi.e., uSsu0,ld
,−u0g, whereas it is the opposite ifl.0 fi.e., uSsu0,ld.
−u0 if l.0g. Provided it corresponds to the actual evolution
of the smooth periodic wave, the piecewise function provides
some insight into how the wave becomes singular. We can

distinguish between two scenarios according to whetherl is
positive or not. In the former case,uSsu0,ld=−u0 when the
threshold is reachedf−u0=uCsldg: the crests become more
and more sharp as the amplitude of the wave increases until
the top of the wave gives rise to a peaksFig. 7d. In the latter
case, a breaking occurs in the middle of the wave since we
haveuSsu0,ld=−u0/Î1−l, and accordinglyuSsu0,ld,−u0,
when −u0=uCsld sFig. 8d.

To complete this study, it is interesting to compute the
angle of the wave shape at the crest for the critical caseu0
=−uCsld. Provided it is defined, the slope at the break point
reads

uu1S8 u =Î 2

1 − l
Sc −

1

l
Îlfsl − 1du0

2 + c2gD s40d

if lÞ1 anduu1S8 u=Îsu0
2−c2d /2 if l=1. Whenl is negative,

the substitution ofu0 by −uC yields uu1S8 u=Î2c/ s1−ld. In
contrast, whenl is positive, we obtain 0, which is not sur-
prising since the singularity in that case occurs at the wave
crest. The slope of the wave shape at this point is then of
little interest and we found it more convenient to evaluate the
slope at the inflection point instead. We findsthis expression
is not valid whenl,0 and −u0.uCd

uu2S8 u =Î 2

1 − l
fc − Îsl − 1du0

2 + c2g s41d

if lÞ1 anduu2S8 u=−u0/Îc if l=1. It leads to, foru0=−uC,

uu2S8 u =Î 2c

1 +Îl
. s42d

These expressions show that the limit angle at the crest van-
ishes asl→` si.e., T→0d while, whenl=−9 si.e., T→`d,
it remains finite.

V. MODULATIONAL INSTABILITY

In this section, we study the resonant interaction occur-
ring in a wave trainsStokes’ wave traind with a narrow band
of frequencies and wavelengths. Let us considerusx,td as a

FIG. 5. Schematic representation of the traveling-wave solutions
for l,0. uS

± is defined only whenuu0uùc/Î1−l; in that case,uS
±

ø uu0u.

FIG. 6. Piecewise continuous function built with solutions of
Eq. s35d for l.0. It ranges fromu0 to uS.
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plane wave. The nonlinear terms in Eq.s30d give rise to
harmonics of the fundamental. Assume that a disturbance is
present consisting of modes with sideband frequences and
wave numbers close to the fundamental. We can have inter-
action between harmonics and these sideband modes. This
interaction is likely to produce a resonant phenomenon mani-
festing itself by the modulation of the plane-wave solution.
The exponencial growth in time of the modulation, originat-
ing from synchronous resonance between harmonics and
sideband modes, leads to the Benjamin-Feir instabilityf21g.
A formal solution can be given via an asymptotic expansion
leading to the nonlinear Schrödinger equationsNLSd f22g.
The particular interest of NLS in the existence of a general
and simple criterion enables us to detect the stability or in-
stability of the monochromatic wave train. Let us seek a
solution of Eq.s30d under the form of a Fourier expansion in
harmonics of the fundamental expiskx−vstd and where the
Fourier components are developed in a Taylor series in pow-

ers of a small parameterd measuring the amplitude of the
fundamental,

u = o
p=1

`

o
l=−p

l=p

d pul
psj,tdexpfil skx− vstdg. s43d

Eq. s43d, u−l
p =ul

* p sthe asterisk denotes complex conjugationd
and j and t are slow variables introduced through the
stretchingj=dsx−Ctd andt=d2t and whereC will be deter-
mined as a solvability condition. The expansionss43d in-
clude fast local oscillations through the dependence on the
harmonics and slow variationsmodulationd in amplitude
taken into account by thej ,t dependence oful

p. Introducing
now this expansion and the slow variables in Eq.s30d, we
may proceed to collect and solve different orderd and l. We
have with

FIG. 7. Numerical integration of Eq.s35d for
l=2 and c=1. The crest of the wave becomes
sharper as the wave amplitude −u0 approaches
the critical valueuCsld=c. The values of −u0 for
the three curves are 0.8, 0.9, and 0.99.

FIG. 8. Numerical integration of Eq.s35d for
l=−3 and c=1. As the wave amplitude −u0

reaches the critical valueuCsld=c/Î1−l, the
wave breaks atuS(−uCsld ,l)=c/ s1−ld. The val-
ues of −u0 for the three curves are 0.3, 0.4, and
0.500 01.
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u1
1 = csj,td, A =

3gs1 − 3ud
2Vh

, B =
3h2

4V
, s44d

the following conditions of solvability:

u0
1 = 0, vs = kV+

A

k
, C = 2V −

vs

k
, s45d

u0
2 = −

k2

2A
ucu2, u2

2 =
k2

4A
c2, u1

2 =
i

k
cj. s46d

At order d=3, l =1 we obtain as a solvability condition the
NLS for csj ,td,

− ict −
A

k3cjj + S 1

8A
− BDk3cucu2 = 0. s47d

The nature of solutions of NLS depends drastically on the
sign of the product between the coefficient ofcjj and that of
cucu2. In this case, this product is positive for

u ,
3

10
, s48d

and according to a well known stability criterionssee, for
example,f1gd, Stokes’ wave train is unstable, that is, any
slight deformation of the plane wave experiences an expo-
nential growth. In the case of water at room temperaturesT
=0.074 N m−1,s=103 kg m−3d, we obtain that a short-wave
train is unstable for a depthh.0.49 cm.

Last but not least, the valueu=3/10 corresponds tol
=1 in Eq. s33d. Precisely,

u , 0.3⇒ l . 1. s49d

VI. FINAL REMARKS

The purpose of this paper was to investigate the behavior
of short waves in a long-wave model. The presence of these
waves may have different origins. First, in modeling real
physical systems, we are often led to use these models be-
yond the precise range of validity under which they were

derived. In that situation, we will very probably be in a short-
wave region. Second, whenever we realize numerical dis-
cretizations of them, short waves are introduced as secondary
effects coming from truncations and finite-difference meth-
ods, when the wavelength is of the order of the grid spacing.
Third, initial wave-packet solutions, in terms of Fourier in-
tegrals, contain in general short-wave components. Instabili-
ties of these waves can cause instability in the entire system.
In this paper, we have investigated the short-wave dynamics
in a Green-Naghdi model with surface tension. We have
found that the traveling plane-wave solutions exist for all the
values of the surface tension parametersexceptu=1/3d and
have determined an amplitude threshold beyond which these
waves become singular. The limit angle value of the resulting
wave is supplied. We have also studied the Benjamin-Feir
instability and have specified the regions in which a wave
train is modulationally stable or unstable.

Some points remain to be developed. Equations30d was
already studied in Ref.f23g in relation to its integrability and
the solutions going to zero forx→`. It has been shown that
in that case the system is completely integrable and con-
nected with the sine-Gordon or the sinh-Gordon equations
depending on the value ofl. It would be interesting to know
if this property is still valid for Eq.s28d.

Finally, let us note that the study of wave dynamics at
short scales in real fluids constitutes an open problem signi-
fiant for theoretical or practical reasons. Dissipative phenom-
ena take place at small scales. They ultimately appear from
the turbulent motion of the fluid. The turbulent fluctuations
of the fluid tend to drain energy and momentum from large
scales of motion to short scales of motion where viscosity
can act directly. Equations28d was derived under the hypoth-
esis that the system is dissipation-free. However, viscosity
cannot always be neglected in real fluids, and this will cer-
tainly affect the asymptotic dynamics of short waves in long-
wave models and their stability. The solution of this problem
must enlighten our knowledge of turbulence phenomena.
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