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Nonlinear dynamics of short traveling capillary-gravity waves
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We establish a Green-Nagdhi model equation for capillary-gravity wavéztit) dimensions. Through the
derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses
(1+12) traveling-wave solutions for almost all the values of the Bond nundéne special cas@=1/3 is not
studied. These waves become singular when their amplitude is larger than a threshold value, related to the
velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied
via a Benjamin-Feir modulational analysis.
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I. INTRODUCTION not reduce such dynamics to a subsidiary phenomenon, since

The propagation of surface waves in an ideal incompresdDeir study is a way to understand the ultraviolet regime in
ible fluid is a classical and still open subject of investigationSurface water wave. _ _ . _
in fluid mechanics. One possible approach to tackle this The purpose of this paper is to investigate theoretically
problem is to elaborate approximate theories from hypothand numerically nonlinear short-wave behavior in a Green-
eses on the nature of the waves. Thus, the shallow waté¥agdhi model with surface tension. Although the model is
approximation has produced a lot of interesting and usefutlerived in a limit where large scales dominate, the existence
nonlinear evolution model equations for small-amplitudeof short waves related to the short scale nature of the capil-
long surface waves. These models can be classified in twiary phenomena cannot be ignored. The study is carried out
main categories: extreme long-wave models like the in(2+1) dimensions. In the long-wave limit, the model leads
Korteweg—de Vries(KdV) or the modified KdV(mKdV) to the Kadomtsev-PetviaskvilKP) equation. Here, we have
equationd 1,2], andintermediatelong-wave models like the only considered short waves since, at present, we lack the
various versions of the Boussinesq or modified Boussinestpols needed to take into account both scales together. This is
equationg[3], the Benjamin-Bona-Mahony-Peregrine equa-an important open problem and some progress was made in
tion [4,5], the Green-Nagdhi systef6—8], and many others. Refs.[16,17].
Roughly speaking, extreme models may be derived from in- The paper is organized as follow. In Sec. Il, we derive a
termediate ones since the latter allow an asymptotic limitGreen-Nagdhi system i2 +1) dimensions, with surface ten-
leading to the ubiquitous KdV or mKd{9,10]. With regard  sion. The analysis of the associated linear dispersion relation
to long-wave dynamics, intermediate models are thereforghows that the model can propagate short waves. To tackle
more precise concerning dispersion and nonlinearities, anthe problem of nonlinear short surface waves, a multiple
accordingly are more representative of Euler systems thascale perturbative method is carried out in Sec. lll and leads
extreme ones. However, this richer description of the waveso an asymptotic model equation. The analytical study of its
has a counterpart for it may incorporate also short-wavel+ 1) traveling-wave solutions is then undertaken in Sec. IV
propagation in the models. It is due to the methods leadin@nd, finally, we perform in Sec. V the Benjamin-Feir analysis
from the Euler system to the intermediate models which aref the Stokes wave. The last section is devoted to some final
not able to filter out completely short waves. This is the caseremarks.
for example, of some of the Boussinesq-type equations and
the Benjamin-Bona-Mahony-Peregrine equafit,11]. Il. THE (2+1) GREEN-NAGDHI MODEL EQUATION

The presence of short scales in a long-scale model may WITH SURFACE TENSION
constitute a major drawback, especially during its numerical
study. Since in that case the final dynamics are a nonlinear Let us consider a fluid layer, initially at rest, in a uniform
superposition of short and long scales, the short waves @ravitational field and endow the space with a Cartesian
unstable can contaminate the whole model. For this reasoffame (O,x,y,2) so that(O2) is the upward vertical direc-
nonlinear propagation of short waves in long-wave modelgion. The fluid domain is contained between a rigid bottom at
has been previously studied in Ref$2—15. Linear theoret- z=0 and a upper free surfaceztS(x,y,t). We assume that
ical estimates on the behaviors of short waves were carriethe fluid is ideal, i.e., inviscid, incompressible, and that its
out, based on the linear dispersion relations of the modelgensity, o, is uniform and constant. Its surface tension is
and thus confirmed by numerical tests performed on the nordenoted byT and the velocity field byw=(u,v,w), where
linear models. A nonlinear analytical and numerical analysisach component dependsxny, z, andt. The motion of the
of this question for the Benjamin-Bona-Mahony-Peregrinefluid in the bulk is then given by the Euler equations. For
equation was conducted in Réfl1]. However, we should 0<z<SXx,y,t), we have
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U, +oy,+w,=0, (13 ) as,
X y ? ouS=- Py — TbTIZ’ (7)
U+ Ul + 0y + WU, = — pi/a, (1b)
* . a
vt+uvx+vvy+WvZ:—py/o', (10 O—US:_py_Tbg/zv (8)
W + UV + D Wy, + WW, = = p,lo-g, (1d)  where the dot stands for the material derivative, i.e.,
wherep* is the pressure field in the fluid armgistands for the U=ug+uu, +ouy, (9

gravitational acceleration. In the equations above and

throughout this paper, the subscripts refer to the partial de—nd the functiong, a, andb are defined by

rivatives. These equations in the flow domain must be com-

pleted by kinematic and dynamic boundary conditions at the p(x,y,t) = J p* dz-peS, (10)

bottom and at the upper free surface. We have 0
w=0 atz=0, (2a) ax YD) =S(1+) +S,(1+) - 25,55, (11
S+uS+vS§,-w=0 atz=8x\y,t), (2b) b(x,y,t):1+§+§. (12)
S<x(1 +§ ) +S,(1 +S) - 2S5,SS, Next, we multiply Eq.(1d) by z and integrate it fronz=0 to

P* =po- z=S, which yields
(1 +§ $)3/2
_ S S as

atz=Sxy.0. 20 o5+ ) +og, =p+T 5. (13

Equation (2c) is the Laplace-Young boundary condition

which rules the pressure difference between the two sides dihe pressurgp may then be eliminated from Eqé?), (8),
the interface. We assume in E@o) that the pressure in the and(13), leading to

upper fluid(typically air) remains uniform and equal i,

Shallow water equations are usually derived by perform- u=-Ss(q+0o - §2(q +)y—9S+ — ( ‘2/2) ,
ing an asymptotic analysis directly on the Euler equatidns b
and boundary condition&). The velocity and the pressure (149

fields are then handled perturbatively through the use of

asymptotic expansions. Our approach is somewhat different _ , ?
since, instead of studying the entire problem via a perturba- =-S§(q+0q) - —(CI +7)y- 9§+ — b3’2 ,
tion theory, we are going to consider first the nonlinear evo- y
lution of a given initial ansatz for the velocity field. We as- (14b)
sume indeed that andv are independent f, that is, .
u=u(x,y,t), (3) S=Sq, (140
and, substituting by its expressiofiEq. (6)], we eventually
v=v(XY,t). (4)  obtain the equations involving the initial fields,

This ab initio given velocity profile, known as theolumnar- 5
flowansatz, can be justified from linear theoretical arguments S(Ug + Ut +vuy) = [§’ (U + Ul — U T Uyt vvyy vy
or, even better, from direct visualization of the particle tra-

jectories of a plane periodic wave in water of fairly depth + Uy + Unyy — 20,00) ]~ 9S§
[18]. It was introduced long ago by Green and Nadd@i8], TS
not in this form but in the rather different framework of the <b3’2) , (159

Cosserat surface theofgee references quoted|in,8]). Be-

sides, these profiles are also obtained through the classical

shallow water analysis. S
The columnar-flow ansatz enables us to derive equations t

involving only three fields, namely, v, andS, and to elimi-

nate thez dependence. From Eqg&la) and (2a), we have

1
— 2 2
+Uvy +vvy) = 3[§(uxt+ Ul — U + 0yt vvyy — 0y

+ vy, + Uvy, — 2U0,) ], — 9SS

_ TS/ a
W(X,y,z,t) = ZgX,y,1), (5 + 7(?/2) , (150
where y
ax,y,t) = = u Xy, 1) —vy(X,y,t). (6) S+ (uSx+ 9y =0. (150
Equations(1b) and(1c) can then be integrated from=0 to ~ These equations constitute a Green-Nagdhi system, with sur-
z=S and, using Leibnitz’s rule, we obtain face tension, i2+1) dimensions.
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The linear dispersion relatiosa(k,|) of the systen(15) is ,
derived by expandingl, v, and S into the following form 0.28 /
(e<):

u=el+0(e), (163
v=€eL+0(), (16b)

S=h+ eW+0O(&), (160
whereh is the unperturbed depth. At the ordgrwe obtain

1 T
Ut = _hz(Uxtx"' Lytx) —gW, + _(Wxxx+ Wyyx)y (173)
3 o

0 1 2 3 4

1 T
L= éhz(Uxty*' Lyty) —gW, + ;(Wxxy‘F Wyy),  (17h) FIG. 1. Representation of the phase veloddk) of Eq. (20)
(broken ling and phase velocitg(k) of Eq. (19 (continuous ling
as a function okh.

W= —h(Uy+L,). (179
To look for the possible solutions of the preceding lineargoing to look for waveshortin x andnormalin y, that is, to
system, we set)=a€?, L=Be?¢, andW=ye'®, where consider they dimension as being a lateral weak perturbation
with respect to thex one.
d=kx+ly - o(kDt, (18) Two new variables are required to appropriately take into

k and | are the wave numbers in the and y directions,
respectively, andy, B, and y are arbitrary constants. From
Eqg. (17), «, B, and y obey a linear homogeneous system
which has nontrivial solutions if

able, ¢, describing a local pattern and a temporal ong,

gressive wave solution of angular frequer(@®), we intro-
duce a small parameterand take

Th
gh+ - -(1%+15 k=" andi=l,, (21)
w(k,|)2:(I2+k2)2—. (19 €
1+ E(I2 +k?) wheree<<1 andky andly are of order 1. The expansion of
in terms ofe reads
The Euler equationél) and(2) have the dispersion relation 31[ 1 go 2
et o]

w=Ky\/—
QZ:(k2+|2)1/2<g+M)tanl{(k2+ 12)22n]. oh
g

¢ \2T " 26" 2
(22

(20)

We can compare the phase velodtyand the group velocity

C,y associated with Eq(20) with the analogous and ¢, 0.4 s
associated with Eq19). This is done in Fig. 1 and Fig. 2 for ’
Q(k) andw(k)(I=0). The pictures show that the linear model ’
(159, (15b), and(15¢) approximates the linear Euler equa- 0.35 ,
tions very well for 1<kh<?2. For kh>2, the divergence 7
increases. ’

It leads to

IIl. ASYMPTOTIC MODEL FOR SHORT 4
CAPILLARY-GRAVITY WAVES y;

0.25 /
The system(15) can be seen as a first reduction of the 7

Euler equations via the columnar-flow hypothesis. It incor- /
porates finite dispersion not only in the long-wave limit but

also in the short-wave one since the surface tension has been 0.
included in the model. Indeed, the dispersion relation is well

behaved whetherk?+12—0 (long wave$ or yk?+[%— o FIG. 2. Representation of the group velocly(k) of Eg. (20)
(short waves The long-wave case leads to the KP equation (broken ling and group velocitycy(k) of Eq. (19) (continuous ling
To examine more precisely the short-scale behavior, we aras a function okh.

0 1 2 3 4
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1 39 1 1, 3n
{= ;(X—Vt), y=y, 7=¢€t, (23) Uy = M(l—:%@)u—EUXXU—ZU)2(+WUXXU§. (30)
whereV=y3T/oh; the associated operators are given by  We then introduce the following dimensionless variables:

g _19 9 _d d_ NI _ J ,_AU - AX LV
= = =-——+e—. (29 u'=z5 3 Ut

— =, - =, I - ’ X = 1 (31)
ax edl ay ay gt edl ar 3V 3h

Now, using expression@4) in Egs.(15), together with the where\ is a nonzero dimensionless parameter defined by

expansions 3(1-36)
N=——.

U= e(Ug+ Uy + ), (259 P (32

They lead, if6+ 1/3, to the more convenient form of Eq.

v=ello+ Lyt o), (25D (30) (dropping the primes

S=h+ E(Wy+ W, + «++), (250 Uyt = U — Uyl — %u§+ %uxxui. (33

we can isolate nonlinear dynamics of short capillary-gravity
waves from the systerfil5) by performing a perturbative If 9=1/3, Eq.(30) is dispersionless and will not be studied

calculation according te. here (see[19,2( for a detailed analysis of the long-wave
Equations(153 in order 1/, Eq. (15b) in order€®, and  dynamics for this special value @§. A traveling wave may
Eqg. (150 in order e yield the following system: be described by a function
3T u(r) =u(x-ct), (34)
V(Uo,+Loy) = mwo,g, (268

wherec denotes the velocity of the wave. In the following,
we only consider waves moving to the right, i.e., we assume

1o T ¢>0. According to Eq(33), the wave profilai(r) must then
Vo= 3Vh (Uogy * Loy O'Wo'gy’ (26D) obey the ordinary differential equation
A 2 — 1 2
VWo,=h(Ug, +Loy), (260) SUrTUFCIUy = Ut Sur (39

whose solution is For A # 0, the study of Eq(35) may be carried out by

\V; 3T using the following change of variables:
Ug= EWO, Lo=0 with V2= pre (27) N
g
X==u?-u+c, (363
Next, the orders of Eq. (158 ande® of Eq. (150 lead to an 2
evolution equation foldy in ¢, y, and 7 coordinates. Rewrit-
ten with the initial variables, it reads Y =u. (36b)
3g 1 1, 3h? , V If N#1, it leads to the first-order differential system
uxt:M(l—%)u— EUxxU‘ Zux+ Euxxux— Euyy, ( ) .
XX=(@Q-NM|Y+ ' 7
(28) X=(1-)) NEEYAL (379
whereu(x,y,t) is the fluid velocity at the surface artlis a 5
dimensionless parameter, the Bond number, given by Y2= X()<+ Y -c), (37b)
T
0= s (299 which is equivalent to Eq(35) provided one excludes from

Egs. (37) the solutionsY,=0 with Y+ 0. The phase portrait
Equation (28) governs the nonlinear propagation of shortof the systen(37) is then easily obtained since E7a can

waves in the long-wave modé€lb). be integrated, giving
2
IV. ANALYSIS OF THE (1+1) TRAVELING-WAVE X2+ (\ - 1)<Y+ ¢ ) =k (374)
SOLUTIONS A-1 ’

As a first investigation in the study of E(28), one may Wwherex is determined by the initial conditions. FaF1, Eq.
begin by looking for its possible traveling-wave solutions. (37b) is still valid, but Eq.(37&) now becomes?+2cY=«.
Owing to the difference between the space scales in each In the following, we restrict the study of E¢35) to the
direction, we will only consider plane waves propagating insolutionsu for which there exists, such thatu,(ro)=0 (the
the short-scale one, i.e., we eliminate thdependence from solutionu=0 is left aside. We also definelp=u(rg) and then
Eq. (28) by removing theu,, term, have from Eq.(37d) x=u3+c?/(A\-1) if X#1 and k=u3
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FIG. 3. Schematic representation of the traveling-wave solutions

for A\=1. ug is defined for all values ofi, and is such thajug|
= |ugl-

+c? if A=1. We found two main cases whext>0. If |ug|
<, the solutions are periodic and defined for allFigs. 3

and 4. Otherwise, they show a singularity for a finite value

of r. In the more specific case<O\<1, the situation is

actually a little more involved since the above singularity

disappears whefug| >c/\1-\>c: the solution is then de-
fined for allr but is not periodidi.e., not bounded When

A <0, the solutions found are periodic again, similar to the

previous ones, ifug| <c/v1-\ (Fig. 5. They show a singu-
larity if ug<-c/V1-\ or c/y1-A<upy<c and are not
bounded ifuy>c. The value of the functiom at the singu-
larity point (see Figs. 3, 4, and 5 for further detaiis given
by
Uiz ——=

ST1-aT N-1
if A% 1 andug=(u3+c?)/(2c) if \=1.

The preceding analysis shows that [E8@) has traveling-
wave solutions for all values of(\ # 0). These waves share
the same feature: they only exist if their amplitug| is
small enough. The threshold valug depends on the sign of

N:uc(N)=c if A>0 anduc(N\)=c/y1-\ if X<0. Belowug,

VAN = Dud +c?] (38)

PHYSICAL REVIEW E 71, 026307(20095

(©

FIG. 4. Schematic representation of the traveling-wave solutions
for O<A<1. ug is defined only wherjug|<c/V1-X\; in that case,
Ug = Ug|.

part of the wave. Beyond the threshold, a solution smooth,
bounded, and defined for all no longer exists. However,
from the existing solutions of Eq.35), one may build a
periodic piecewise function which may be seen as the evo-
lution of the periodic wave after it ceases to exist with a
smooth shape, and whose only singularities are located at the
crests, periodically distributed on threaxis (Fig. 6). Actu-

ally, from a physical point of view such construction is rel-

the wave is periodic and smooth, whereas as the amplitudevant only whernuy<0. According to Eq(38), the height of
reaches the threshold value, a singularity appears in the tdpe crest is given by, ik # 1,

026307-5
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u FIG. 6. Piecewise continuous function built with solutions of
Eq. (35 for A>0. It ranges fromug to us.

distinguish between two scenarios according to whexhisr
positive or not. In the former casag(uy,\)=-uUg when the
threshold is reachef-uy=uc(\)]: the crests become more
and more sharp as the amplitude of the wave increases until
the top of the wave gives rise to a ped@ig. 7). In the latter
case, a breaking occurs in the middle of the wave since we
haveus(uo,x)——uol\l \, and accordinglyug(ug,\) <-uj,
when -ug=uc(\) (Fig. 8).

To complete this study, it is interesting to compute the
angle of the wave shape at the crest for the critical egse
=-uc(\). Provided it is defined, the slope at the break point
reads

luid = \/1 2)\<c— —W(A-1 u0+c2]> (40

if A+ 1 and|u;d=+(u3—-c?/2 if A=1. When\ is negative,

the substitution ofuy by -uc yields |u;d=+2c/(1-)\). In
contrast, when\ is positive, we obtain 0, which is not sur-
prising since the singularity in that case occurs at the wave
crest. The slope of the wave shape at this point is then of
little interest and we found it more convenient to evaluate the
slope at the inflection point instead. We fiftlis expression

is not valid when\ <0 and -ty>uc)

lupd = \/_[C -V - Duj+ Cz] (41)

FIG. 5. Schematic representation of the traveling-wave solutions

+ ; 1=xi * . .
fg?u)\|< 0. ug is defined only wherug|=c/V1-X; in that casepg if A1 and|ujd=-uo/\c if A=1. It leads to, foruy=-uc,
<|ug|.

2c
1+\)\

|upd = (42)
These expressions show that the limit angle at the crest van-
ishes as\ —« (i.e., T—0) while, when\=-9 (i.e., T— ),
provided it is defined, ands(uo,l):(u§+c2)/(2c). It may be it remains finite.

worth noting that ifA <0, the lower part of the resulting
wave is more extensive than the upper dne., ug(ug,\)
<-Ug), whereas it is the opposite X>0 [i.e., ug(ug,\) >
—Ug if A>0]. Provided it corresponds to the actual evolution In this section, we study the resonant interaction occur-
of the smooth periodic wave, the piecewise function providesing in a wave trainStokes’ wave traipwith a narrow band
some insight into how the wave becomes singular. We caof frequencies and wavelengths. Let us considert) as a

c 1 —
A= ——+ ——\[(\ = Dud+c?, 39
us(Ug,\) T o [(N—Dug+c?] (39

V. MODULATIONAL INSTABILITY

026307-6
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1

0.8

| A\
« /)
\ FIG. 7. Numerical integration of Eq35) for

A

N=2 andc=1. The crest of the wave becomes
0 sharper as the wave amplitudei;-approaches

the critical valueuc(\)=c. The values of g for

02 // \\ the three curves are 0.8, 0.9, and 0.99.
-0.4
-0.6 / \
-0.8

-1

-4 -3 -2 -1 0 1 2 3 4

plane wave. The nonlinear terms in E@O0) give rise to  ers of a small parametet measuring the amplitude of the
harmonics of the fundamental. Assume that a disturbance if&ndamental,
present consisting of modes with sideband frequences and

wave numbers close to the fundamental. We can have inter- "
action between harmonics and these sideband modes. This ‘E
interaction is likely to produce a resonant phenomenon mani- u=
festing itself by the modulation of the plane-wave solution.
The exponencial growth in time of the modulation, originat-
ing from synchronous resonance between harmonics anidg. (43), uE|:u|*p(the asterisk denotes complex conjugation
sideband modes, leads to the Benjamin-Feir instatfiiyy. ~ and & and 7 are slow variables introduced through the
A formal solution can be given via an asymptotic expansiorstretchingé= 8(x—Ct) and 7= 6’ and whereC will be deter-
leading to the nonlinear Schrodinger equatidfLS) [22].  mined as a solvability condition. The expansio@s) in-

The particular interest of NLS in the existence of a generatlude fast local oscillations through the dependence on the
and simple criterion enables us to detect the stability or inharmonics and slow variatioimodulatior) in amplitude
stability of the monochromatic wave train. Let us seek ataken into account by thé = dependence aff. Introducing
solution of Eq.(30) under the form of a Fourier expansion in now this expansion and the slow variables in E2D), we
harmonics of the fundamental ekx—w¢) and where the may proceed to collect and solve different ordesndl. We
Fourier components are developed in a Taylor series in powhave with

p
SPUP(&, Nexdil (kx— od)]. (43)

©

p=11

0.4

02 \ /

FIG. 8. Numerical integration of Eq35) for
A=-3 and c=1. As the wave amplitude ug
0 reaches the critical valueic(\)=c/ V1-), the
wave breaks atig(—uc(\),\)=c/(1-\). The val-
ues of -, for the three curves are 0.3, 0.4, and
0.500 01.

-0.2

-0.4
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. 3g(1-36) 3h?2 derived. In that situation, we will very probably be in a short-

up=¢n), A=————, B=—, (44 wave region. Second, whenever we realize numerical dis-
2Vh v o :

cretizations of them, short waves are introduced as secondary

the following conditions of solvability: effects coming from truncations and finite-difference meth-
ods, when the wavelength is of the order of the grid spacing.

ué: 0, ws=kV+ ﬁ, C=2V- ﬂs, (45) Third, initial V\_/a\{e-packet solutions, in terms of Fourier in—._

k tegrals, contain in general short-wave components. Instabili-

ties of these waves can cause instability in the entire system.
) . 5 i In this paper, we have investigated the short-wave dynamics
Uo:‘ﬁw , Uzzﬂ\'ﬁzl U1=E'ﬂ§- (46)  in a Green-Naghdi model with surface tension. We have
found that the traveling plane-wave solutions exist for all the
At order 6=3, =1 we obtain as a solvability condition the values of the surface tension paraméd®tceptd=1/3) and

NLS for (&, 7), have determined an amplitude threshold beyond which these
waves become singular. The limit angle value of the resulting

— i, - %¢§§+ (i - B>k31,/;|¢/|2:0. (47) ~ Wave is supplied. We have also studied the Benjamin-Feir

k 8A instability and have specified the regions in which a wave

. . train is modulationally stable or unstable.
The nature of solutions of NLS depends drastically on the Some points remain to be developed. Equatis) was

sign of the product between the coefficientfgf and that of already studied in Ref23] in relation to its integrability and

2 . ; . o
Y{4f*. In this case, this product is positive for the solutions going to zero for— . It has been shown that
in that case the system is completely integrable and con-
6< 10’ (48) nected with the sine-Gordon or the sinh-Gordon equations
depending on the value af It would be interesting to know
and according to a well known stability criteridsee, for  if this property is still valid for Eq.(28).
example,[1]), Stokes’ wave train is unstable, that is, any Finally, let us note that the study of wave dynamics at
slight deformation of the plane wave experiences an exposhort scales in real fluids constitutes an open problem signi-
nential growth. In the case of water at room temperatlire fiant for theoretical or practical reasons. Dissipative phenom-
=0.074 N m?,0=10° kg m %), we obtain that a short-wave ena take place at small scales. They ultimately appear from

train is unstable for a depth>0.49 cm. the turbulent motion of the fluid. The turbulent fluctuations
Last but not least, the valu@=3/10 corresponds to.  of the fluid tend to drain energy and momentum from large
=1 in Eq.(33). Precisely, scales of motion to short scales of motion where viscosity

can act directly. Equatio(28) was derived under the hypoth-

esis that the system is dissipation-free. However, viscosity

cannot always be neglected in real fluids, and this will cer-

tainly affect the asymptotic dynamics of short waves in long-

wave models and their stability. The solution of this problem
The purpose of this paper was to investigate the behaviomust enlighten our knowledge of turbulence phenomena.

of short waves in a long-wave model. The presence of these

waves may have different origins. First, in modeling real ACKNOWLEDGMENTS
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